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1 Introduction

1.1 Conventions

Vectors

All vectors in this document are denoted with a bold face font. Of special note is the position vector x =
[
x y z

]T
not to be confused with the state vector X (see blow).

Zero Robotics Attitude

A reduced attitude representation is available to simplify the process of attitude control. The Zero Robotics attitude

speci�es a pointing direction n̂ZR =
[
nx ny nz

]T
for the Velcro (-x) face of the satellite. The API function

ZRSetAttitudeTarget() orients the satellite to point its Velcro face in the selected direction1. No control is provided
for the vehicle's rotation about the pointing direction. More advanced users may prefer to use quaternions for attitude
control (see next section).

Quaternion Attitude (Advanced)

Internally, SPHERES uses a quaternion to represent rotations. The quaternion represents a transformation from the
global coordinate frame to the body frame of the satellite by rotating through an angle θ about a unit vector axis

n̂ =
[
nx ny nz

]T
. A quaternion is represented as a vector of length four, with the following properties

q =
[
sin θ

2 · n̂ cos θ2
]T

‖q‖ = 1

In our convention q =
[
q1 q2 q3 q4

]T
with the scalar part, cos θ2 , as the fourth term. Please note that the ZR

attitude representation speci�es the pointing direction for the -x face of the satellite, so an identity (no rotation)

quaternion q =
[
0 0 0 1

]T
corresponds to a ZR attitude of n̂ZR =

[
−1 0 0

]T
.

Simple cases of the challenge should be possible with either attitude representation, but using quaternions will
allow more advanced motion than the ZR attitude. The ZR API provides the function ZRSetQuatTarget() to specify
a quaternion attitude target, and several math functions are available for performing calculations with them. See
the ZR API documentation for details.

State Vectors

Two types of state vectors are available to determine the satellite's full state (position, velocity, orientation, and
attitude rates). A 13-element SPHERES state

XSPHERES =
[

x ẋ q ω
]T

may be retrieved with the API function ZRGetMySphState() and uses a quaternion attitude. Alternatively, the Zero
Robotics state

XZR =
[

x ẋ n̂ ω
]T

1Note that calling ZRSetAttitudeTarget() will point the satellite in a speci�ed direction, not at a speci�ed location.
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Figure 1: Capture Zone Positioning

may be retrieved with the API function ZRGetMyZRState() and uses the ZR attitude. A SPHERES state can be
converted to ZR state with the function ZRSpheresToZR().

2 Challenge Statement

2.1 Objective

The Autonomous Space Capture Challenge consists of synchronizing rotational and translational motion with a
tumbling space object, thereby setting up the conditions to �capture� it. The challenge speci�cally focuses on
producing a control algorithm that minimizes the propellant cost to capture the object. Competitors will also
identify the most challenging docking conditions by specifying several parameters of the space object's motion (see
Section 2.3). To complete the challenge, the Tender must:

1. Maneuver to a Capture Zone located 25± 1 cm along the -x axis in the 7◦ Approach Cone of the space object
(see Figure 1). Section 3 provides calculations for determining if the Tender is in the capture zone

2. Align for capture by orienting the -x axis of your satellite within ±2.5◦ of the space object's -x axis (see Figure
2)

3. Stay within the capture zone for 5 seconds with a relative velocity of less than 5 mm/s

while avoiding the following constraints:

1. The Tender must maintain a 30 cm collision avoidance distance from the center of the space object except
when in the approach cone (see Figure 3). The approach cone ends at the boundary of the capture zone at 24
cm from the object.

2. Docking must occur while the centers of both the Tender and the space object are within the Object Capture
Area. The boundaries are shown in Figure 4. It is important to note that the absolute position of the tender
within the test volume will have a high uncertainty. See section 2.4.

3. The Tender must complete the challenge without running out of a virtual tank of propellant. Each time the
Tender �res a thruster, a counter records the total time it is open. An allocation of 30 thruster-seconds is
allowed for completing the challenge. The total propellant remaining in thruster-seconds is available through
the API function ACGetFuelRemaining() and is displayed in the visualization.

4. The Tender must complete the capture maneuver within a time period of 210 seconds.

For initial testing it is possible to disable the capture constraints by setting the ZR game variable DisableConstraints
to 1 in the simulation settings dialog.
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Figure 2: Capture Zone Alignment

Figure 3: Collision Avoidance Region and Avoidance Cone

Figure 4: Capture Area
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2.2 Tender Initial Conditions

Both satellite competitors will be initialized in the same virtual location in the test volume. The initial position will
be on the −y axis:

x0 =
[
0.0 −0.6 0.0

]T
The initial orientation starts with the docking port facing the space object side of the volume with the Velcro face
of the Tender along the Y axis. This corresponds to a ZR attitude of

n0 =
[
0 1 0

]T
and a quaternion attitude of

q0 =
[
0.7071 −0.7071 0 0

]T
.

The Tender will have no initial velocity or rotation rate with respect to the global coordinate frame.

2.3 Space Object Parameters

A key part of the challenge will be selecting a set of parameters that initialize the state of the space object and a�ect
its motion. Table 1 describes the con�gurable parameters. The initial position for the object is speci�ed in only the
(x, z) plane, and the y position is constant:

y0 = 0.6m

To initialize the parameters, the API function ACSetObjectParams() must be called in ZRInit() with an Object-
Params data structure. Also, note the limits placed on the parameters. The limits are intended to keep the motion
within the thrust capabilities of the SPHERES satellites, though some combinations of parameters may result in
impossible scenarios. If any user-supplied parameters exceed the speci�ed limits or the parameters are not speci�ed,
the Tender's controls will be disabled, and the submission will be scored as if it did not complete the challenge.

The initial attitude of the space object is speci�ed as a quaternion. If you prefer to use the ZR attitude to specify
the orientation, use the API fucntion ZRAttVec2Quat() to create a quaternion from the ZR attitude vector.

(Updated 2012-04-14) The initial rotation axis direction speci�ed by ω0 will be perturbed randomly by up to
8 degrees. For testing purposes the perturbation can be disabled by setting the game variable DisableSpinAxisNoise
to 1.

2.4 Relative State Information

In contrast to previous Zero Robotics competitions, the state information provided for the space object will be
expressed in a coordinate frame centered on the tender's position. This relative state information models the in-
formation that would be available to a tender spacecraft when capturing a space object at close proximity using a
LIDAR or camera-based sensor. To further emphasize the importance of using relative state information, the position
states provided by the ZRGetMySphState() and ZRGetMyZRState() API functions will be intentionally distorted
with additional random noise. The position information will be su�cient to avoid the walls of the volume, but the
information should not be used for capturing the object.

Since the objective of the challenge is to develop an independent control system to dock to the target, the API
functions ZRGetOther*State() will not return a state for the other player.

2.5 Scoring

Scoring Calculation

During the scoring process, submissions run in head-to-head matches against the top performing projects on the
competition leaderboard. For each pairing, the scoring system runs matches with the players as both SPH1 and
SPH2, and both players use the space object parameters speci�ed by SPH1. If SPH1 does not specify parameters,
the parameters from SPH2 are used, and SPH1 is not scored. Both competitors are initialized in the same positions
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Parameter Description Limit Units

Ix, Iy, Iz Principal moments of inertia

Imax

Imin
≤ 18

kg −m2
Ix + Iy ≥ Iz

Iy + Iz ≥ Ix

Iz + Ix ≥ Iy

v0 Initial velocity ‖v0‖ ≤ 0.15 m
s

x0, z0 Initial position in the (x, z) plane ±0.75 m

q0 Initial quaternion orientation ‖q‖ = 1 -

ω0 Initial angular velocity
‖ω0‖ ≤ 0.16

rad
s

‖ω0‖ ≥ 0.03

Table 1: Con�gurable capture object parameters

and perform the same capture challenge with the same object parameters simultaneously. The �nal score for the
match will be the di�erence in propellant consumed between the two players.

score1 = propUsed2 − propUsed1
score2 = propUsed1 − propUsed2

It is important to note that although the two competitors in a match will always be performing the same challenge
and have identical satellites, the two satellites may be a�ected by random perturbations in di�erent ways, resulting
in small or even large variations in score. This is fully intended as part of the challenge and re�ects uncertainties
in the satellite dynamic and sensing models. The best performing solutions will be those that prove to be robust to
these variations and a wide variety of object parameters.

Partial Completion

If only one competitor completes the challenge in the allotted time without violating constraints, the score for the
successful tender (+) is automatically set to the maximum 5 points, and the score for the unsuccessful tender (-) is
set to -5.

score+ = 5

score− = −5

As an extra incentive for attempting to complete the challenge, if the unsuccessful tender manages to reach the
capture zone for at least one second, and the relative fuel consumption between the satellites is within 1 unit, the
unsuccessful tender will receive 0 points instead of -5.

score+ = as above

score− = 0
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If neither satellite completes the challenge their scores will both be set to 0.

Entering a Submission

Scores are calculated whenever a competitor enters a submission. To enter a submission, follow these steps:

1. Click on the teammanagement link for your team under the Resources→ TeamManagement page (www.zerorobotics.org/web/zero-
robotics/my-teams)

2. From the menu in the left column, select the Submissions button

3. Select the Submit Project or Update Project button and choose a project to be scored

4. After clicking Submit the project will be compiled and checked for code size limitations. If compilation is
successful, the project will be queued for scoring.

The scoring process may take up to 15-30 minutes to complete depending on server loads. Attempting to submit
another project during the scoring process will result in a noti�cation indicating that the scoring process is still
running. If you do not see an option to submit a project, please contact support.

The Competition Leaderboard

The leaderboard will be visible on the ZRASCC tournament detail page after the �rst submissions are made. The
leaderboard operates as follows:

1. When a new submission is entered, a batch simulation is started against the top players in the current leader-
board standings.

2. After each match, the scores of both players are updated. This means the top leaderboard positions are
constantly defending against challenges from new submissions.

3. Position on the leaderboard is determined by the average score over all the matches the submission has partic-
ipated in. If a new match is completed between the same players as an old match, the old score is deleted and
replaced with the new match results.

Match visualization results are available by clicking on a ranked player.

2.6 Test Result Codes

When simulations complete in the IDE, they return a single number that indicates the outcome of a test. The
following numbers indicate the outcomes of a ZRASCC simulation.

Result Code Description

10 Capture Completed Successfully

20 Timeout

30 Constraints Violated

40 Out of Propellant

50 Object Parameters not Speci�ed
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3 Math Reference and API Functions

3.1 Space Object Motion

The space object is modeled as a rigid body translating and rotating through space with no external forces or torques.
The body angular rates of the object follow the Euler equations for rigid body rotation as shown in Equation 1.

ω̇x =
Iy − Iz
Ix

ωyωz

ω̇y =
Iz − Ix
Iy

ωzωx

ω̇z =
Ix − Iy
Iz

ωxωy (1)

The attitude of the object is represented with a quaternion and is propagated according to the following equation

q̇ =
1

2
Ωq

Ω =



0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


(2)

The center of the capture zone moves as if rigidly attached to the space object at a distance of 25cm along the
body axis as shown in Equation 4. Equation 4 describes the global position of the capture zone given the position
of the object, and Equation 5 shows the global velocity of the capture zone taking into account the velocity of the
object and its rotational velocity.

rcap =

[
−0.25 0 0

]T
(3)

xcap = xobj + Rb2grcap (4)

ẋcap = ẋobj + Rb2g (ωobj × rcap) (5)

The matrix Rb2g converts vectors in the body frame of the object into vectors in the global coordinate frame, and
the vector ωobj represents the body frame rotation rates. The attitude target for the capture zone is the space object
attitude rotated 180◦ about the body Z axis. The target can be calculated by post-multiplying the object quaternion

by the rotation quaternion qrot =

[
0 0 1 0

]T
as shown in Equation 6. The body rotation rates of the capture

zone are likewise rotated by 180◦to match the orientation of the tender.

qcap = qobj × qrot (6)

ωcap = Rrotωobj (7)

Several utility functions are provided to simplify the task of predicting the motion of the satellite and the capture
zone. Full speci�cations for the functions are provided in the API documents.

ACGetObjectState() Retrieves the SPHERES state of the space object relative to the position of the tender. The
(x, y, z) directions are aligned with the global coordinate frame. Attitude is with respect to the the global
coordinate frame and rotation rates are with respect to the body frame of the space object.
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ACPredictState() Integrates the equations of motion of the object forward from the supplied initial state

ACGetCaptureState() Given a SPHERES state of the space object, determines the full SPHERES state Xcap =[
xcap ẋcap qcap ωcap

]T
of the center of the capture zone

3.2 Approach Cone

There are two steps to determining if the the Tender is in the capture cone of the space object.

1. Determine which direction the approach cone is pointing in the global frame. The unit vector attitude contained
in the ZR state vector provides a quick way of retrieving the direction because it points in the same direction
as the cone.

n̂cone = n̂object

2. Calculate the relative unit vector r̂ between the space object and the Tender using their state vectors. Taking
the dot product with the unit vector n̂cone results in the cosine of the angle between the two vectors. If the
angle is within the half-cone angle of 2.4◦ the the Tender is within the approach cone.

r = xtender − xobject
r

‖r‖
· n̂cone ≥ cos(2.4◦) ⇒ in cone

The API function ACInCone() performs this check when provided a SPHERES state vector for both the Tender and
the space object.

3.3 Capture Zone

In addition to the checks in Section 3.2, the capture zone requires the distance to the space object to be within 25±1
cm and the relative velocity within 5 mm/s.

0.24 ≤ ‖r‖ ≤ 0.26 AND

‖ṙ‖ ≤ 0.005 ⇒ in capture

Additionally, the relative attitude between the two objects must be within 2.5◦. Using the ZR state vector, calculate
the dot product between the attitude vector of the Tender and the attitude of the space object.

−n̂cone · n̂tender ≥ cos(2.5◦)⇒ aligned

Note the change of sign now that the axes are anti-aligned. The API function ACInCapture() will perform these
checks provided a SPHERES state vector for both the Tender and the space object. There is no requirement on the
rotation of the satellite about the pointing direction to allow for use of ZR attitude or quaternion attitude.

4 Problem Add-Ons and Adjustments

Several additional problem add-ons have been identi�ed to increase the di�culty of the capture challenge by adding
more realistic features. At the end of each week, the Zero Robotics team will evaluate the progress of the competitors
and may choose to release one or more add-ons for the upcoming week. The changes are intended to promote more
advanced solutions and re-invigorate the solution space once the competitors begin to converge on an equilibrium.
Problem simpli�cations will also be considered if required.

4.1 Pointing Constraint

Many concepts for autonomous capture rely on a LIDAR or camera sensor to track the object during approach. This
add-on will require the Tender to be pointed at the space object to retrieve the state from ACGetObjectState().
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4.2 State Noise (ACTIVE 2012-04-04)

The level of noise on the global state of the satellite may be increased to discourage its use for position control or
lowered to allow for better maneuvering around the boundary constraints.

4.3 Approach Cone

The angle of the approach cone may be decreased to provide more challenging conditions for the �nal synchronization.

4.4 Propellant Constraint

The propellant allocation may be decreased or increased depending on the performance of the competitors. In
general, it is expected that the allocation will only be adjusted if there is a signi�cant di�erence between the default
allocation and the amount required for demonstrated capture scenarios.

4.5 Non-Completion Penalty

The fuel penalty for not completing the capture may be adjusted to better match the scale of scores in the competition.

4.6 Minimum Object Rotation Rate (ACTIVE 2012-04-14)

The rotation rate of the object ‖ω0‖ must be at least 0.03 rad/s. This add-on will encourage a more challenging
capture scenario.

5 Example Code and Standard Player

A basic competitor has been created to demonstrate the use of the API functions. It is available as a standard player
to compete against under the username 'zrascc' and example code for the player is available in the API documentation.
The player does not avoid the collision or boundary constraints, so consider setting �DisableConstraints� when testing
the player initially.

Change Log

Version Description Author Date

1.0 Initial Release jgkatz 2012-03-28

1.01 Added clarifying note about disabled ZRGetOther*State() jgkatz 2012-04-01

1.1 Updated scoring description for partial completion. Activated state noise add-on. jgkatz 2012-04-05

1.2 Modi�ed description of leaderboard scoring to re�ect new double-match system jgkatz 2012-04-09

1.3 Simpli�ed bonus for partial completion and activated new add-on for rotation axis perturbation jgkatz 2012-04-14
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